

    
      
          
            
  
EPCY: Evaluation of Predictive CapabilitY

EPCY is a method used to rank genes (features) according to their
potential as predictive (bio)markers, using quantitative data (like
gene expression).

Installation

Using PyPI

pip install epcy
epcy -h





Overview

Similarly to Differential Expression analyses, EPCY take as input two
tabulated files:


	a table which describes the comparative design of the experience


	a matrix which contains quantitative data for each gene (feature) and sample




Using these two input files, EPCY will evaluate the predictive
capacity of each gene individually and return predictive scores, along
with their confidence intervals.

To guarantee the reliability of predictive scores, EPCY uses a leave-one-out
cross validation to train multiple Kernel Density Estimation (KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation])
classifiers and evaluate their performances on unseen samples
(see method [https://epcy.readthedocs.io/en/latest/method.html] for more
details).

Background

EPCY is a product of the Leucegene project and has
been developed and tested specifically to analyse RNA-seq data of acute
myeloid leukemia (AML) patients. However, the method implemented in
EPCY is generic and should work on different quantitative data.

Citing

While we are finalizing work on the official paper, more details can be found
in a poster presented at ISMB ECCB 2019 [https://f1000research.com/posters/8-1349]:

Audemard E, Sauvé L and Lemieux S. EPCY: Evaluation of Predictive
CapabilitY for ranking biomarker gene candidates [version 1; not peer reviewed].
F1000Research 2019, 8(ISCB Comm J):1349(poster)
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First steps with EPCY

EPCY is implemented in python3 and allows to perform predictive
analyses using bash command line.

If it’s not already done, you need to install EPCY

pip install epcy
epcy -h






Input files

EPCY is designed to work on several quantitative data (like genes
expression), provided that this data is normalized, that is
quantitative values for each genes (features) need to be comparable
between each samples. For RNA-seq data, TPM, FPKM or even counts per
million reads (CPM) values would be appropriate (normalization per
transcript length is not critical since we will be comparing
quantities between samples, not within samples).

To run EPCY, you need two tabulated files, as input:



	A matrix of quantitative data, normalized for each samples (in columns)
with an ID column to identify each genes (features), in first.





Example of a quantitative matrix







	id

	Sample1

	…

	SampleX





	Gene1

	10

	…

	20



	…

	…

	…

	…



	GeneY

	12

	…

	16







	A design table which describes the parameters or conditions on
which to perform the analyses. This table is composed of a first
column Sample, followed by at least one column which describes
each sample for each parameter. A new column is needed for each
parameter.  For a gene knock-out experiment for instance, a column
would indicate which samples are wild-type and which is knock-out.





Example of a design table







	sample

	Condition

	Knockout_exp

	Gender





	Sample1

	Query

	KO

	F



	…

	…

	…

	…



	SampleX

	Ref

	WT

	M











Download input files

For this tutorial, we propose to download a part of the Leucegene
cohort composed by 88 Acute Myeloid Leukemia (AML) individual
samples. To reduce the execution time, we are going to only analyze
coding genes (19,892 genes).  These input files are available in a specific
git repo named epcy_tuto, and can be downloaded using git:

git clone git@github.com:iric-soft/epcy_tuto.git
cd epcy_tuto/data/leucegene





If you examine the design.txt file, you can see that an AML column
is used to classify each sample into one of these 3 subtypes of AML:
t15_17, inv16 and other.  These refer to samples that show
either a chromosome 15-17 translocation, a chromosome 16 inversion or
other defect respectively.



design.txt





	Sample

	AML





	01H001

	Other



	01H002

	t15_17



	…

	…



	13H120

	inv16



	…

	…



	14H133

	t15_17









We will start by comparing t15_17 samples versus all other samples (inv16 and
other). On a macbook pro 2 GHz Dual-Core Intel Core i5, this analysis takes
10 min, using 4 thread.



Run your first EPCY analysis

EPCY is divided into severals tools, which can be listed using:

epcy -h





Among all these tools, epcy pred is the one which allows to run a default
comparative predictive analysis.  In our current case, we would write:

epcy pred --log -t 4 -m cpm.tsv  -d design.txt --condition AML --query t15_17 -o ./29_t15_17_vs_59/
# Or if you only want compare versus inv16 subgroup
epcy pred --log -t 4 -m cpm.tsv  -d design.txt --condition AML --query t15_17 --ref inv16 -o ./29_t15_17_vs_27_inv16/






	where:
	
	--log: specifies that quantitative data needs to to be log transformed
before being analyzed.


	-t 4: allows to use 4 threads for the analysis.


	-m cpm.tsv: specifies the quantitative matrix file.


	-d design.txt: specifies the design table.


	--condition AML: determines the condition column we want use.


	--query t15_17: specifies which subgroup of AML samples we want to compare to all the other.


	-o ./29_t15_17_vs_59/: specifies the output directory.








More information can be found, using epcy pred -h.

If everything is correct, the analysis will complete by displaying the following output:

15:43:02: Read design and matrix features
15:43:04: 181 features with sum==0 have been removed.
15:43:04: Start epcy analysis of 19766 features
15:52:22: Save epcy results
15:52:22: End







Results

predictive_capability.tsv is the main output of an EPCY
analysis. It is a tabulated file which contains the evaluation of each
genes (features) for its predictive value, using 9 columns:


	id: the id of each gene (feature).


	l2fc: log2 fold change.


	kernel_mcc: Matthews Correlation Coefficient (MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_mcc_low: lower bound of the confidence interval (90%).


	kernel_mcc_high: upper bound of the confidence interval (90%).


	mean_log2_query: average of log transformed values of this feature for samples in the subgroup of interest defined using the –query parameter.


	mean_log2_ref: average of log transformed values of this feature for samples in the reference group.


	bw_query: estimated bandwidth used by KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation], to calculate the density of query samples.


	bw_ref: estimated bandwidth used by KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation], to calculate the density of ref samples.




Genes (features) with the highest kernel_mcc values correspond to
the most prodictive ones. The file may then be sorted on that column
to obtain the following:


./29_t15_17_vs_59/predictive_capability.tsv ordered on kernel_mcc












	id

	l2fc

	kernel_mcc

	kernel_mcc_low

	kernel_mcc_high

	mean_query

	mean_ref

	bw_query

	bw_ref





	ENSG00000183570.16

	3.97

	0.98

	0.95

	1

	4.84

	0.87

	0.24

	0.42



	ENSG00000168004.9

	3.75

	0.97

	0.97

	0.97

	4.00

	0.24

	0.28

	0.10



	ENSG00000089820.15

	-4.25

	0.97

	0.62

	0.97

	4.21

	8.47

	0.34

	0.23



	…

	…

	…

	…

	…

	…

	…

	…

	…






Note: Since EPCY uses some random steps in its implementation, you may
observe small variations in your results. The argument -- randomseed
42 can be used to obtain the exact same results (see Reproductibility
section).



Quality control

EPCY needs to have enough data to train the KDE classifier and evaluate
the predictive capability of each gene (feature) accurately.
Without enough samples, EPCY will overfit [https://en.wikipedia.org/wiki/Overfitting] and return a large number
of negative MCC.

Unfortunately, it is a priori difficult to detemine a lower bound
for the number samples needed, as this number will depend on the
dataset analyzed.  However, EPCY provides some quality control tools (epcy
qc), to verify if there is overfitting [https://en.wikipedia.org/wiki/Overfitting] or not, by checking the
distribution of MCC and bandwidth [https://en.wikipedia.org/wiki/Kernel_density_estimation#Bandwidth_selection].

Using epcy qc, we can plot two quality control figures, as follow:

epcy qc -p ./29_t15_17_vs_59/predictive_capability.tsv -o ./29_t15_17_vs_59/qc





[image: gene profiles]
We can see in these graphs that quality is good, since:


	Most negative MCC, are close to 0.


	The minimum bandwidth (default 0.1), avoids learning from variations represented
by the first mode of the distribution.




An example of bad quality control results can be made by simulating a dataset that is too small, as follows:

epcy pred --log -t 4 -m cpm.tsv  -d design_10_samples.txt --condition AML --query t15_17 -o ./5_t15_17_vs_5/
epcy qc -p ./5_t15_17_vs_5/predictive_capability.tsv -o ./5_t15_17_vs_5/qc





[image: gene profiles]


Plot a KDE trained on gene expression

EPCY also provides some visual tools, which can help with the
exploration of your dataset.  Using epcy profile, we can plot the
gene expression distribution, along with the trained KDE classifier
that represents each condition.

# ENSG00000162493.16 (PDPN, MCC=0.87), ENSG00000227268.4 (KLLN, MCC=0.33)
epcy profile --log -m cpm.tsv -d design.txt --condition AML --query t15_17 -o ./29_t15_17_vs_59/figures/ --ids ENSG00000162493.16 ENSG00000227268.4





[image: gene profiles]


Reproducibility

EPCY draws a random value to assign a class according to probabilities learned
by the KDE classifier, to fill a contingency table (see algorithm section).
This means that different runs of EPCY can produce different results.

However, the output of EPCY is relatively stable, since each
predictive score returned is already a mean of several predictive
score calculations (by default 100), which are performed to minimize
variance between runs. Nevertheless, different runs might show small
variations.  To ensure reproducibility, we add a parameter to specify
the seed of the random number generator, using --randomseed.

Here is an example on the dataset used for the tutorial (see, How to use EPCY).

epcy pred --randomseed 42 --log -t 4 -m cpm.tsv  -d design.txt --condition AML --query inv16 -o ./27_inv16_vs_61/







Some details on the design table

As mentioned before, the design.txt file classifies samples in 3 different
subtypes (t15_17, inv16 and other). Similarly as we did for t15_17, we
can analyse inv16 samples vs all others samples (t15_17 and
other), using the command below:

epcy pred --log -t 4 -m cpm.tsv  -d design.txt --condition AML --query inv16 -o ./27_inv16_vs_61/





Moreover, it is possible to add more columns in design.txt, each
one representing conditions you want to compare. Indeed, with the
design table given as example (in introduction), we could perform an
analysis on Gender, using --condition Gender --query M -o
./gender.

Also, if some annotations are unknown for some samples, we can remove these
samples from the analysis by using None in the corresponding cell.



Example where the AML subtype of sampleX is unknown and
             needs to be removed from the analysis.






	Sample

	AML

	Gender





	Sample1

	t15_17

	M



	…

	…

	…



	SampleX

	None

	F









With all these variations, you should be able to perform any number of
comparisons using a unique design file, or by creating a different design file
for each comparison.





            

          

      

      

    

  

    
      
          
            
  
How EPCY works

EPCY is a general method to rank genes (or features) according to their
potential as predictive (bio)markers, using quantitative data (like
gene expression).


Visual description of the method implemented in EPCY

[image: Overview of EPCY]
EPCY evaluates each gene’s predictive capacity through a leave-one-out
cross-validation protocol. Subgroup densities are first modeled by a Kernel
Density Estimation (KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation]) and used as part of a classifier Ckde on all
samples minus one. Then Ckde is used to compute the probability of each class
of the removed sample. This procedure is repeated for each sample.
Next, we fill a contingency table (CT [https://en.wikipedia.org/wiki/Contingency_table]) by randomly drawing,
for each sample, a predicted class according to the classifier’s probability.
This procedure is repeated m times to create m CTs (m = 100 by default).
Finally, a Matthew’s correlation coefficient (MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient]) is computed for
each CT [https://en.wikipedia.org/wiki/Contingency_table] and these values are summarized as a mean MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient] with a confidence
interval (CI).

EPCY can also reports other predictive scores [https://epcy.readthedocs.io/en/latest/predictive_capability_columns.html#predictive-scores].





            

          

      

      

    

  

    
      
          
            
  
Details of predictive capability columns

By default, epcy pred and epcy pred_rna will return an output file
predictive_capability.tsv of 9 columns:


	Default columns:


	id: the id of each feature.


	l2fc: log2 fold change.


	kernel_mcc: Matthews Correlation Coefficient (MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_mcc_low, kernel_mcc_high: lower and upper bounds of confidence interval (90%).


	mean_query: average values of this feature for samples in the subgroup of interest defined using the –query parameter.


	mean_ref: average values of this feature for samples in the reference group (not in the query subset).


	bw_query: estimated bandwidth used by KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation], to calculate the density of query samples.


	bw_ref: estimated bandwidth used by KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation], to calculate the density of ref samples.








However, epcy can expand or modify this default output using several
options, see:

epcy pred -h






Predictive scores

By default we decide to return MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient] scores. However, it’s possible to compute
other predictive scores, in case they are more suitable for your needs. Using the following
parameters will add new columns to the default output, as:


	--ppv:


	kernel_ppv: Positive Predictive value (PPV [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values], precision) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_ppv_low, kernel_ppv_high: boundaries of confidence interval (90%).






	--npv:


	kernel_npv: Negative Predictive value (NPV [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_npv_low, kernel_ppv_high: boundaries of confidence interval (90%).






	--tpr:


	kernel_tpr: True Positive Rate value (TPR [https://en.wikipedia.org/wiki/Sensitivity_and_specificity], sensitivity) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_tpr_low, kernel_tpr_high: boundaries of confidence interval (90%).






	--tnr:


	kernel_tnr: True Negative Rate value (TNR [https://en.wikipedia.org/wiki/Sensitivity_and_specificity], specificity) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_tnr_low, kernel_tnr_high: boundaries of confidence interval (90%).






	--fnr:


	kernel_fnr: False Negative Rate value (FNR [https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#False_positive_and_false_negative_rates], miss rate) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_fnr_low, kernel_fnr_high: boundaries of confidence interval (90%).






	--fpr:


	kernel_fpr: False Positive Rate Rate value (FPR [https://en.wikipedia.org/wiki/False_positive_rate], fall-out) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_fpr_low, kernel_fpr_high: boundaries of confidence interval (90%).






	--fdr:


	kernel_fdr: False Discovery Rate value (FDR [https://en.wikipedia.org/wiki/False_discovery_rate]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_fdr_low, kernel_fdr_high: boundaries of confidence interval (90%).






	--for:


	kernel_for: False Omission Rate value (FOR [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_for_low, kernel_for_high: boundaries of confidence interval (90%).






	--ts:


	kernel_ts: Threat Score value (TS [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient], critical sucess index) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_ts_low, kernel_ts_high: boundaries of confidence interval (90%).






	--acc:


	kernel_acc: Accuracy value (ACC [https://en.wikipedia.org/wiki/Accuracy_and_precision]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_acc_low, kernel_acc_high: boundaries of confidence interval (90%).






	--f1:


	kernel_f1: F1 score value (F1 [https://en.wikipedia.org/wiki/F-score]) compute by a predictor using KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation].


	kernel_f1_low, kernel_f1_high: boundaries of confidence interval (90%).






	--auc:


	auc: Area Under the Curve










Statistical test

EPCY is able to perform statistical tests, using:


	--auc --utest:


	u_pv: pvalue compute by a MannWhitney [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html] rank test






	--ttest:


	t_pv: pvalue compute by ttest_ind [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html]










Normal distribution

The type of classifier used to evaluate the predictive score of each gene
(feature), is a parameter of EPCY. By default, EPCY will use a KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation]
classifier. However, it is possible to replace the KDE [https://en.wikipedia.org/wiki/Kernel_density_estimation] classifier by
a normal classifier, using --normal.

Using the normal classifier, all predictive scores (listed above) remain
available. However, the column name of each predictive score, will be changed
to start with normal instead of kernel (normal_mcc vs kernel_mcc),
to be consistant.



Missing values

On some dataset (as in proteomics or single-cell), quantitative matrix can have
some missing values (nan). In that case there are different alternatives to manage
these missing values within EPCY:
* Impute missing values before running EPCY.
* Replace missing values by a constant, using --replacena.
* For each gene (or feature), remove samples with missing values.

If you choose to remove samples with missing values, EPCY will return
a predictive_capability.tsv with two new columns,
sample_query and sample_ref, to report for each gene (feature),
the number of query and reference samples used (without missing values).

If you have downloaded the source code or data on git [https://github.com/iric-soft/epcy/tree/master/data/small_for_test],
you can test these procedures using:


epcy pred --norm --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/matrix.tsv -o ./data/small_for_test/using_na
epcy pred --replacena 0 --norm --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/matrix.tsv -o ./data/small_for_test/replace_na












            

          

      

      

    

  

    
      
          
            
  
Working on RNA quantification

In contrast to most Differential Expression methods specifically
designed to analyse RNA quantification data, EPCY is a generic method
that can be used to analyse several types of quantification data,
similarly to statistical tests. However, EPCY provides specific tools,
pred_rna and profile_rna, to streamline the analysis of RNA data.


bulk RNA

In the First steps with EPCY [https://epcy.readthedocs.io/en/latest/basic_usage.html],
we saw how to run EPCY on normalized quantitative
data. However, EPCY can work directly on read counts, using pred_rna tool:

# The commande seen in first steps sections
epcy pred --log -t 4 -m cpm.tsv  -d design.txt --subgroup AML --query t15_17 -o ./30_t15_17_vs_70/ --randomseed 42
# Equivalent analysis using read counts quantification and pred_rna
epcy pred_rna --cpm --log -t 4 -m readcounts.tsv  -d design.txt --subgroup AML --query t15_17 -o ./30_t15_17_vs_70_readcounts/ --randomseed 42





Similarly, you can use profile_rna to plot a trained KDE with its
gene expression distribution, directly from read counts:

# The commande seen in first steps sections
epcy profile --log -m cpm.tsv -d design.txt --subgroup AML --query t15_17 -o ./30_t15_17_vs_70/figures/ --ids ENSG00000162493.16 ENSG00000227268.4

# Equivalent commande using read counts and profile_rna
epcy profile_rna --cpm --log -m readcounts.tsv -d design.txt --subgroup AML --query t15_17 -o ./30_t15_17_vs_70_readcounts/figures/ --ids ENSG00000162493.16 ENSG00000227268.4





[image: readcounts gene profiles]
More help can be found using:

epcy pred_rna -h
epcy profile_rna -h







Kallisto quantification

EPCY allows to work directly on kallisto [https://pachterlab.github.io/kallisto] [1] transcript
quantifications using the HDF5 files to take into consideration the
expression values of bootsrapped samples computed by this software.
To do so, a kallisto column needs to be added to the design file
(which specifies the directory path of the abundant.h5 file for each
sample).

Using data available on git [https://github.com/iric-soft/epcy/tree/master/data/small_leucegene/5_inv16_vs_5/] and epcy pred_rna, you can run EPCY
as follow:

# To run on kallisto quantification, add --kall --cpm --log
epcy pred_rna --kal --cpm --log -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5/trans/
# Note that:
# - kallisto quantification is on transcript, not on gene
# - On real (complet) dataset, it is recommended to add some threads (-t)





To analyse gene level expression, a gff3 file of the genome annotation
needs to be specified, to provide the correspondence between
transcript and gene ids. For the Leucegene toy dataset, which was
quantified using Ensembl annotatiosn, this file can be downloaded from
ensembl [https://useast.ensembl.org/info/data/ftp/index.html] and added in the command, as follow:

# To run on kallisto quantification and gene level, add --gene --anno [file.gff]
epcy pred_rna --kal --cpm --log --gene --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5/gene/ --randomseed 42
epcy profile_rna --kal --cpm --log --gene --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5/gene/figures --ids ENSG00000100345
# If you prefer analyse your data on tpm, replace --cpm by --tpm





To take account the inferential variance (introduced by sleuth [https://pachterlab.github.io/sleuth] [2]), EPCY can use
bootstrapped samples, using --bs:

epcy pred_rna --kal --cpm --log --gene --bs 10 --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_bs/gene/ --randomseed 42
epcy profile_rna --kal --cpm --log --gene --bs 10 --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_bs/gene/figures --ids ENSG00000100345





When reading all kallisto files is time consuming, you can use epcy kal2mat
tool, to create a quantification matrix file and use EPCY, as before:

# Without bootstrapped samples
epcy kal2mat --gene --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat/gene/
epcy pred_rna --cpm --log -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -m ./data/small_leucegene/5_inv16_vs_5_mat/gene/readcounts.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat/gene/ --randomseed 42
epcy profile_rna --cpm --log -m ./data/small_leucegene/5_inv16_vs_5_mat/gene/readcounts.tsv -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat/gene/figures --ids ENSG00000100345

# With bootstrapped samples
epcy kal2mat --gene --bs 10 --anno ./data/small_genome/Homo_sapiens.GRCh38.84.reduce.gff3 -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat_bs/gene/
epcy pred_rna --bs 10 --cpm --log -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -m ./data/small_leucegene/5_inv16_vs_5_mat_bs/gene/readcounts.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat_bs/gene/ --randomseed 42
epcy profile_rna --bs 10 --cpm --log -m ./data/small_leucegene/5_inv16_vs_5_mat_bs/gene/readcounts.tsv -d ./data/small_leucegene/5_inv16_vs_5/design.tsv -o ./data/small_leucegene/5_inv16_vs_5_mat_bs/gene/figures --ids ENSG00000100345







Single-cell

Several developments are planned in order to facilitate the use of
EPCY for single-cell data (to manage sparse matrix and run on GPU for
instance). In the meantime, you can analyse your single-cell data with
epcy pred and epcy profile using the RNA-seq pipeline described in
First steps with EPCY [https://epcy.readthedocs.io/en/latest/basic_usage.html]
on normalized expression data.

On read counts (not normalized), you can use epcy pred_rna and
epcy profile_rna with --cpmed (in place of --cpm) to normalized read
counts according to median depth of the dataset.

epcy pred_rna --cpmed --log ...







[1]
Nicolas L Bray, Harold Pimentel, Páll Melsted and Lior Pachter, Near-optimal probabilistic RNA-seq quantification [https://www.nature.com/articles/nbt.3519], Nature Biotechnology 34, 525–527 (2016), doi:10.1038/nbt.3519



[2]
Harold J. Pimentel, Nicolas Bray, Suzette Puente, Páll Melsted and Lior Pachter, Differential analysis of RNA-Seq incorporating quantification uncertainty [https://www.nature.com/articles/nmeth.4324], Nature Methods (2017), advanced access http://dx.doi.org/10.1038/nmeth.4324







            

          

      

      

    

  

    
      
          
            
  
How to explore EPCY output to select best candidates

EPCY output is comparable to statistical (or differential) analysis,
except that p-values are replaced by a predictive score (MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient] by default, see
predictive scores [https://epcy.readthedocs.io/en/latest/predictive_capability_columns.html#predictive-scores]).
Consequently most tools already developed to explore statistical output
can be transpose to explore EPCY output, starting by the volcano plot.


Volcano plot

Using same data and analysis made in First steps with EPCY [https://epcy.readthedocs.io/en/latest/basic_usage.html], we can
create a volcano plot like this:

# If not done, start by downloading data and scripts from epcy_tuto
git clone git@github.com:iric-soft/epcy_tuto.git
cd epcy_tuto/data/leucegene

# Run EPCY analysis with --ttest to add a pvalue column
# (see Details in predictive capability columns section)
epcy pred_rna --log --cpm -t 4 -m readcounts.tsv --ttest -d design.txt --condition AML --query t15_17 -o ./29_t15_17_vs_59/ --randomseed 42

# Display volcano plot using MCC
python ../../script/volcano.py -i ./29_t15_17_vs_59/predictive_capability.tsv -o ./29_t15_17_vs_59/

# Display volcano plot using pvalue
python ../../script/volcano.py -i ./29_t15_17_vs_59/predictive_capability.tsv -o ./29_t15_17_vs_59/ --pvalue





[image: gene profiles]


Identify a threshold

Generally, the next step is to identify a MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient] threshold to select best
candidates.

In case the expected predicted performance to reach is known, we can use it
directly as a threshold. For example, if we can accept a maximum of 3% of
misclassified samples (or 2 samples in this case), summarized by these three
contingency tables (CT [https://en.wikipedia.org/wiki/Contingency_table]):

[image: contingency tables with 3% of miss classified samples]
Using these three theoretical cases, we can identify that a MCC [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient]
threshold of more than 0.95 is needed and identify the 4 genes which satisfy the
objective previously defined:

# Display volcano plot using MCC
python ../../script/volcano.py -t 0.95 -i ./29_t15_17_vs_59/predictive_capability.tsv -o ./29_t15_17_vs_59/ --anno ./ensembl_anno_GRCh38_94.tsv
epcy profile_rna --log --cpm -m readcounts.tsv -d design.txt --condition AML --query t15_17 -o ./29_t15_17_vs_59/profile_cutoff/ --ids ENSG00000173531.15 ENSG00000168004.9 ENSG00000089820.15 ENSG00000183570.16





[image: contingency tables with 3% of miss classified samples]
In case the expected performance is directly formulate using predictive scores
(as accuracy, sensibility, specificity or other), this is even simpler.
We can add these scores to the epcy pred command line (see
predictive scores [https://epcy.readthedocs.io/en/latest/predictive_capability_columns.html#predictive-scores])
to be able to filter EPCY’s output on each of them.



Using empirical False Positive Rate

Now, when we have no expectation and want select all genes (features) with a
“significant” predictive score, we can use the --shuffle option of
epcy pred to compute predictive scores on random designs similar to our initial
experiment. Using several shuffled analyses, we can estimate a
null distribution and use it to identify a threshold, according to a percentage
of accepted False Positive Rate (FPR [https://en.wikipedia.org/wiki/False_positive_rate]):

# Take around 80 min using a macbook pro 2 GHz Dual-Core Intel Core i5.
for n in `seq 1 10`; do epcy pred_rna --log --cpm -t 4 -m readcounts.tsv  -d design.txt --condition AML --query t15_17 --shuffle -o ./29_t15_17_vs_59/shuffled/$n; done

# Display:
#  - the MCC distribution computed on shuffled analyses
#  - the cutoff for eFPR < 0.0001
python ../../script/eFPR.py -d ./29_t15_17_vs_59/shuffled/ -o ./29_t15_17_vs_59/ -p 0.0001

# Display volcano plot with a threshold = 0.25
python ../../script/volcano.py -t 0.25 -i ./29_t15_17_vs_59/predictive_capability.tsv -o ./29_t15_17_vs_59/ --anno ./ensembl_anno_GRCh38_94.tsv





[image: cutoff estimate using empirical null distribution]




            

          

      

      

    

  

    
      
          
            
  
Working on small dataset

Coming soon.
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